■ PROPRIÉTÉ : Du signe de f'(x) au sens de variation de f

- 1) Si, pour tout $x \in I$, f'(x) > 0, alors f est strictement croissante sur I.
- 2) Si, pour tout $x \in I$, f'(x) < 0, alors f est strictement décroissante sur I.
- 3) Si, pour tout $x \in I$, f'(x) = 0, alors f est constante sur I.

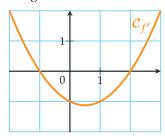
MÉTHODE 1 Déterminer les variations d'une fonction

- 1) On détermine l'ensemble de définition et de dérivabilité de f puis on calcule f'(x).
- 2) On étudie le signe de f'(x).
- 3) On en déduit les variations de f et on résume le tout dans un tableau.

Exercice d'application Déterminer les variations de la fonction f définie par :

$$f(x) = \frac{x^3}{6} - \frac{x^2}{4} - x.$$

Correction f est définie et dérivable sur $\mathbb R$ et pour tout réel x, on a $f'(x) = \frac{x^2}{2} - \frac{x}{2} - 1$. f' est une fonction polynôme du second degré et ses racines sont -1 et 2. Comme a > 0, on a alors :



D'où le signe de f'(x) et les variations de f:

х	$-\infty$		-1		2		+∞
f'(x)		+	ø	_	0	+	
f			$\frac{7}{12}$	\longrightarrow	$-\frac{5}{3}$		→

Pour compléter le tableau, on calcule :

•
$$f(-1) = -\frac{1}{6} - \frac{1}{4} + 1 = \frac{-2 - 3 + 12}{12} = \frac{7}{12}$$

• $f(2) = \frac{8}{6} - 1 - 2 = \frac{4}{3} - 3 = -\frac{5}{3}$

•
$$f(2) = \frac{8}{6} - 1 - 2 = \frac{4}{3} - 3 = -\frac{5}{3}$$

■ DÉFINITION : **Extremum**

- 1) On dit que f admet un maximum local (resp. minimum local) en a s'il existe un intervalle ouvert J contenu dans I et contenant a tel que, pour tout $x \in J$: $f(x) \leq f(a)$ (resp. $f(x) \geq f(a)$).
- **2)** Dire qu'une fonction admet un **extremum local** signifie que *f* admet un maximum local ou un minimum local.

■ PROPRIÉTÉ : Caractérisation d'un extremum

Soit f une fonction définie et dérivable sur un intervalle I et $a \in I$.

Si f' s'annule en changeant de signe en a, alors f admet un extremum local en a.

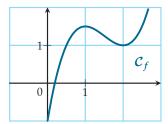
MÉTHODE 2 Faire le lien entre extrema et dérivée

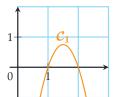
- 1) On repère les extrema locaux de f en lesquels f' doit s'annuler en changeant de signe.
- 2) On repère la nature de chaque extremum:
 - a) si c'est un maximum, la dérivée doit être positive « avant » et négative « après » ;
 - b) si c'est un minimum, la dérivée doit être négative « avant » et positive « après ».

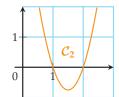
Exercice d'application

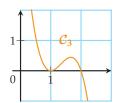
On considère une fonction f dont on donne la représentation graphique ci-contre.

Parmi les courbes ci-dessous, la quelle est susceptible de représenter f^\prime ?









Correction f possède deux extrema locaux en x = 1 et x = 2. La dérivée doit donc s'annuler en changeant de signe en x = 1 et x = 2: on peut donc éliminer C_3 car la fonction associée à cette courbe ne change pas de signe en x = 1.

En x=1, l'extremum est un maximum donc f'(x) doit être positive « avant 1 » , s'annuler en 1 puis être négative « après 1 » : seule la courbe \mathcal{C}_2 convient.

On peut vérifier avec l'autre extremum : en x=2 on a un minimum et la fonction associée à la courbe \mathcal{C}_2 est bien négative « avant 2 » et positive « après 2 ».