# CH 14 Produit scalaire

$$\vec{u} \cdot \vec{v} = ?$$

- Le scalaire (Pterophyllum scalare) est une espèce de poisson d'eau douce de la famille des Cichlidés.
- L'espèce est originaire des régions humides d'Amérique du Sud.
- C'est l'espèce la plus commune du genre Pterophyllum. Cela s'explique notamment par sa capacité d'adaptation, sa longévité (10 ans en moyenne) et la facilité de sa reproduction.
- Il est surtout apprécié pour sa forme élégante et la multitude de coloris disponibles.
- En mathématiques, un scalaire est un élément de l'anneau de base d'un module ou du corps de base d'un espace vectoriel.
- C'est souvent un nombre réel ou complexe.



### Produit et scalaire

structure de produit

nombre réel

intérêt

Orthogonalité (angles droits )



La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand *Hermann Grassmann* (1809 ; 1877), ci-contre.

Il fut baptisé produit scalaire par *William Hamilton* (1805 ; 1865) en 1853.

Aujourd'hui, le produit scalaire se rencontre dans tous les domaines de la physique :

- Energie et moment cinétique d'un solide;
- · Hydrodynamique;
- Circulation et flux d'un champ électrostatique;
- Electromagnétisme, équation de <u>Maxwell</u>, force de Lorentz (physicien hollandais, 1853-1928).
- ...

# multiplication de deux réels

vecteurs colinéaires

vecteurs non colinéaires

geogebra

## cas simple multiplications de réels et vecteurs colinéaires

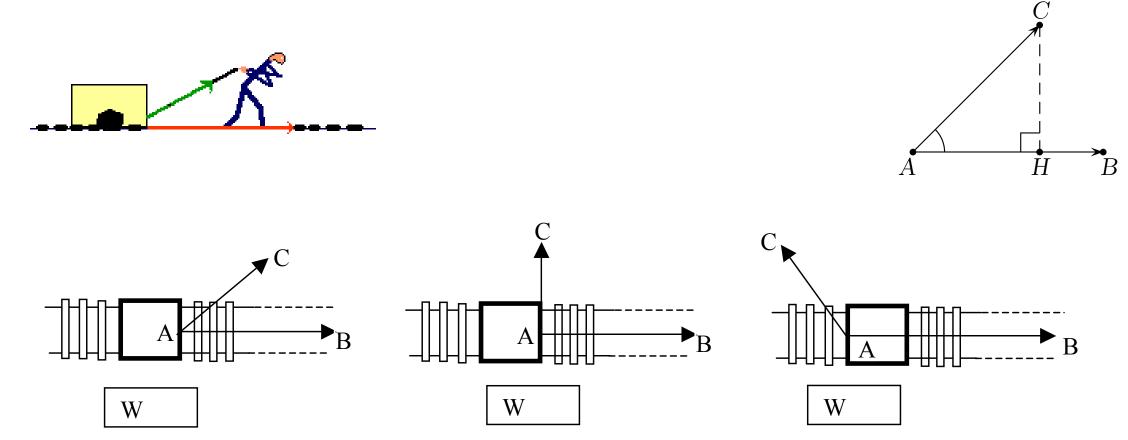
exemple droite graduée

geogebra

et s'ils ne sont pas colinéaires? projeté orthogonal

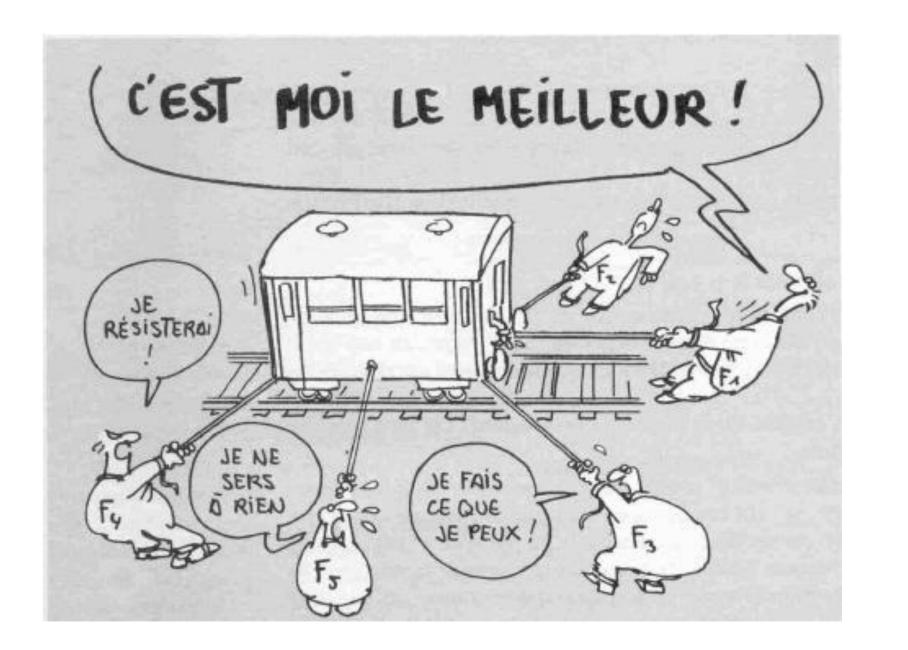
notation carré d'un vecteur

#### travail d'une force



Le travail d'une force  $\overrightarrow{AC}$  durant le déplacement de A vers B est un nombre W :

- positif lorsque la force favorise le déplacement de A vers B
- négatif lorsque la force s'oppose au déplacement de A vers B
- nul lorsque la force ne contribue pas au déplacement de A vers B



#### 3 définitions

Le **produit scalaire** de deux vecteurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$ , noté  $\overrightarrow{u}.\overrightarrow{v}$ , est le **nombre réel** défini par :

$$\overrightarrow{u}.\overrightarrow{v} = \frac{1}{2} \left( ||\overrightarrow{u} + \overrightarrow{v}||^2 - ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2 \right)$$

Le plan est muni d'un repère **orthonormé**. Soit  $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$  et  $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$  deux vecteurs. On a alors :

$$\overrightarrow{u}.\overrightarrow{v} = xx' + yy'$$

Soit  $\overrightarrow{u}$  et  $\overrightarrow{v}$  deux vecteurs non nuls, et  $\theta$  une mesure de l'angle de vecteurs  $(\overrightarrow{u}, \overrightarrow{v})$ . Alors :

$$\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos\theta$$

le triangle est-il rectangle?

# révision cosinus, sinus tangente

coordonnées polaires

Pythagore, trigonométrie, projeté orthogonal, norme d'un vecteur

## vecteurs, norme et Pythagore



défaut d'orthogonalité

