Unit 158 Knowledge in diagnosis and rectification of light vehicle chassis faults

<table>
<thead>
<tr>
<th>UAN:</th>
<th>L/601/3735</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level:</td>
<td>3</td>
</tr>
<tr>
<td>Credit value:</td>
<td>6</td>
</tr>
<tr>
<td>GLH:</td>
<td>45</td>
</tr>
<tr>
<td>Relationship to NOS:</td>
<td>This unit is linked to LV08 Diagnose and Rectify Light Vehicle Chassis System Faults.</td>
</tr>
<tr>
<td>Assessment requirements specified by a sector or regulatory body:</td>
<td>This unit was developed by the IMI, the sector skills council for the automotive retail industry. All assessments have been developed in accordance with the IMI Assessment Requirements for VRQs.</td>
</tr>
</tbody>
</table>

Aim:
This unit enables the learner to develop an understanding of diagnosis and rectification of braking steering and suspension systems. It also covers light vehicle chassis systems and the evaluation of their performance.

<table>
<thead>
<tr>
<th>Learning outcome</th>
<th>The learner will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>understand how the light vehicle chassis systems operate</td>
</tr>
</tbody>
</table>

Assessment criteria
The learner can:

1.1 explain the construction and operation of light vehicle chassis systems to include:
1.2 electronic braking
1.3 front and rear wheel geometry
1.4 four wheel steer
1.5 hydraulic power steering
1.6 electronic power steering
1.7 self levelling suspension
1.8 ride control system
1.9 explain the interaction between electrical, electronic and mechanical components within light vehicle chassis systems
1.10 explain how light vehicle chassis electrical systems interlink and interact, including multiplexing
1.11 compare light vehicle chassis system components and assemblies against alternatives to identify differences in construction and operation
1.12 identify the engineering principles that are related to light vehicle chassis systems
1.13 inertia force, mass and acceleration
1.14 laws of friction
1.15 statics (springs and torsion bars)
1.16 hydraulic machines.

Learning outcome

<table>
<thead>
<tr>
<th>The learner will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. understand how to diagnose and rectify faults in light vehicle chassis systems</td>
</tr>
</tbody>
</table>

Assessment criteria

The learner can:

2.1 explain symptoms and causes of faults found in light vehicle chassis systems
2.2 explain systematic diagnostic techniques used in identifying chassis system faults
2.3 explain how to examine, measure and make suitable adjustments to the components
2.4 explain how to carry out the diagnosis and rectification activities in order to correct the faults in the light vehicle chassis systems
2.5 explain how to select, prepare and use diagnostic and rectification equipment for light vehicle chassis systems
2.6 explain how to evaluate and interpret test results found in diagnosing light vehicle chassis system faults against vehicle manufacturer specifications and settings
2.7 explain how to evaluate the operation of components and systems following diagnosis and repair to confirm system performance.
Unit 158 Knowledge in diagnosis and rectification of light vehicle chassis faults

Supporting information

Candidates will be assessed on the assessment criteria as specified within the unit. The following information has been provided by IMI SSC and is included to support centres in terms of teaching and delivery.

Electronic and electronic principles of light vehicle chassis systems
a. The operation of electrical and electronic systems and components related to light vehicle chassis systems including:
 i. ECU
 ii. sensors and actuators
 iii. electrical inputs
 iv. voltages
 v. oscilloscope patterns
 vi. digital and fibre optic principles.
b. The interaction between the electrical/electronic system and mechanical components of chassis systems.
c. Electronic and electrical safety procedures.

Operation of electronic ABS and EBD braking systems
a. Layout of:
 i. ABS and EBD braking systems
 ii. anti-lock braking
 iii. anti-skid control systems
 iv. warning systems.
b. Operation of:
 i. hydraulic and electronic control units
 ii. wheel speed sensors
 iii. load sensors
 iv. hoses
 v. cables and connectors.
c. Advantage of ABS and EBD braking systems over conventional braking systems.
d. The relationship and interaction of ABS braking with and other vehicle systems – traction control.

Steering geometry for light vehicle applications
a. Non-steered wheel geometry settings.
b. Front/rear wheel geometry:
 i. castor
 ii. camber
 iii. kingpin or swivel pin inclination
 iv. negative offset
 v. wheel alignment (tracking)
 vi. toe in and toe out
 vii. toe out on turns and steered wheel geometry
viii. Ackerman principle
ix. slip angles
x. self-aligning torque
xi. oversteer and understeer
xii. neutral steer.
c. The operation and layout of rear and four wheel steering.
d. The construction and operation of power assisted steering systems:
 i. hydraulic system
 ii. power cylinders
 iii. drive belts and pumps
 iv. hydraulic valve (rotary, spool and flapper type).
e. The operation of:
 i. electronic power steering systems (EPS)
 ii. electrical and electronic components.

Components and operation of self-levelling suspension
a. The components, construction and operation of a self levelling suspension system.
b. The operation of self-levelling suspension system under various conditions:
 i. self-energising
 ii. pump operated self-levelling suspension.

Operation of fitting ride-controlled systems
a. The reasons for fitting ride controlled systems.
b. The operation of driver controlled and ride controlled systems.

Symptoms and faults in braking systems
a. Symptoms and faults associated with conventional braking systems, ABS, and EBD systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic systems
 iv. fluid leaks
 v. warning light operation
 vi. poor brake efficiency
 vii. wheel locking under braking.

Diagnosis and faults in braking systems
a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements.
b. Prepare equipment for use in diagnostic testing.
c. Conduct systematic testing and inspection of:
 i. braking system
 ii. ABS
 iii. EBD
 iv. mechanical
 v. hydraulic
 vi. electrical and electronic systems.
d. Using appropriate tools and equipment including:
Symptoms and faults associated with steering systems

a. Symptoms and faults associated with steering systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic
 iv. steering boxes (rack and pinion, worm and re-circulating ball)
 v. steering arms and linkages
 vi. steering joints and bushes
 vii. idler gears
 viii. bearings
 ix. steering columns (collapsible and absorbing)
 x. power steering system.

Diagnosis and faults in steering systems

a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements.

b. How to prepare equipment for use in diagnostic testing.

c. Conduct systematic testing and inspection of:
 i. steering systems
 ii. mechanical
 iii. hydraulic
 iv. electrical and electronic systems
 v. power steering system.

d. Using appropriate tools and equipment including:
 i. multi-meters
 ii. oscilloscope
 iii. pressure gauges
 iv. wheel alignment equipment
 v. steering geometry equipment.

e. Evaluate and interpret test results from diagnostic testing.

f. Compare test result and values with vehicle manufacturer’s specifications and settings.

h. Assess, examine and evaluate the:
 i. operation
Symptoms and faults associated with suspension systems

a. Symptoms and faults associated with suspension systems:
 i. mechanical
 ii. hydraulic
 iii. electrical and electronic
 iv. conventional
 v. self-levelling and ride controlled suspension systems
 vi. ride height (unequal and low)
 vii. wear
 viii. noises under operation
 ix. fluid leakage
 x. excessive leakage
 xi. excessive tyre wear.

Diagnosis and faults in suspension systems

a. Locate and interpret information for:
 i. diagnostic tests
 ii. vehicle and equipment specifications
 iii. use of equipment
 iv. testing procedures
 v. test plans
 vi. fault codes
 vii. legal requirements.

b. How to prepare equipment for use in diagnostic testing.

c. How to conduct systematic testing and inspection of:
 i. suspension systems
 ii. mechanical
 iii. hydraulic
 iv. electrical and electronic systems
 v. conventional
 vi. self-levelling and ride controlled suspension systems.

d. Using appropriate tools and equipment including:
 i. multi-meters
 ii. oscilloscope
 iii. pressure gauges
 iv. alignment equipment
 v. geometry equipment.

e. Evaluate and interpret test results from diagnostic testing.

f. Compare test result and values with vehicle manufacturer’s specifications and settings.

g. How to dismantle, components and systems using appropriate equipment and procedures.

h. Assess, examine and evaluate the operation, settings, values, condition and performance of components and systems.

i. Probable faults, malfunctions and incorrect settings.

j. Rectification or replacement procedures.

k. Operation of systems following diagnosis and repair to confirm operation and performance.
Measurements on components to include:

a. settings
b. input and output values
c. voltages
d. current consumption
e. resistance
f. output patterns with oscilloscope
g. pressures
h. condition
i. wear and performance.